eCommons

 

Limit Operators and Convergence Measures for $\omega$-Languages with Applications to Extreme Fairness

Other Titles

Abstract

Methods of program verification for liveness and fairness rely on measuring "progress" of finite computations towards satisfying the specification. Previous methods are based on explaining progress in terms of well-founded sets. These approaches, however, often led to complicated transformations or inductive applications of proof rules. Our main contribution is a simpler measure of progress based on an ordering that is not well-founded. This ordering is a variation on the Kleene-Brouwer ordering on nodes of a finite-path tree. It has the unusual property that for any infinite ordered sequence of nodes, the liminf of the node depths (levels) is finite. This novel view of progress gives a precise mathematical characterization of what it means to satisfy very general program properties. In particular, we solve the problem of finding a progress measure for termination under extreme fairness.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1990-02

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR90-1100

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record