eCommons

 

On Moessner's Theorem

Other Titles

Abstract

Moessner's theorem describes a procedure for generating a sequence of n integer sequences that lead unexpectedly to the sequence of nth powers 1^n, 2^n, 3^n, ... Paasche's theorem is a generalization of Moessner's; by varying the parameters of the procedure, one can obtain the sequence of factorials 1!, 2!, 3!, ... or the sequence of superfactorials 1!!, 2!!, 3!!, ... Long's theorem generalizes Moessner's in another direction, providing a procedure to generate the sequence a, (a+d)2^{n-1}, (a+2d)3^{n-1}, ... Proofs of these results in the literature are typically based on combinatorics of binomial coefficients or calculational scans. In this note we give a short and revealing algebraic proof of a general theorem that contains Moessner's, Paasche's, and Long's as special cases. We also prove a generalization that gives new Moessner-type theorems.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2011-06-12

Publisher

Keywords

Moessner's theorem

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record