eCommons

 

HEAT KERNEL ESTIMATE OF THE SCHRODINGER OPERATOR IN UNIFORM DOMAINS

Other Titles

Author(s)

Abstract

In this thesis we study the properties of the Schrodinger operator L=−∆+q on a Harnack-type Dirichlet space for q belonging to Kato class K or Kato-infinity class K∞. To be specific, it consists of three parts as follows: The first part is a generalization of [27]. For any Harnack-type Dirichlet space we give conditions under which there exists a positive Dirichlet solution (the profile) in an unbounded uniform domain for the operator L. In this setting, we further give the two-sided heat kernel estimate using the famous h-transform technique. The idea of second part comes from [64]. In the exterior of a compact set in a non- parabolic Harnack-type space, we can prove some equivalent statements connect- ing subcrilicality, positiveness of the Green function, gaugeability and the bound- edness of the Dirichlet-type solution provided the potential q ∈ K∞. Particularly, we can apply the boundedness result of the profile to the first part and conclude a more precise heat kernel estimate. In the third part we provide some typical examples and explore some properties when the potential decays faster than the quadratic one. Some other examples are given in the domain outside an unbounded domain and we propose some hypothesis as an supplement to the second part.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2019-05-30

Publisher

Keywords

Mathematics; Dirichlet; Heat Kernel Estimate; Uniform Domain

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Saloff-Coste, Laurent Pascal

Committee Co-Chair

Committee Member

Healey, Timothy James
Cao, Xiaodong

Degree Discipline

Mathematics

Degree Name

Ph.D., Mathematics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record