The Procrustes Problem for Orthogonal Stiefel Matrices
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Authors
Abstract
(This abstract contains mathematical symbols that may not reproduce wellin ASCII text.) In this paper we consider the Procrustes problem on the manifold of orthogonal Stiefel matrices. That is, given matrices A epsilon R(m*k), B epsilon R(m*p), m greater tahn or equal to p greater than or equal to k, we seek the minimum of ||A - BQ||2 for all matrices Q epsilon R(p*k), QTQ = I(k*k). We introduce a class of relaxation methods for generating minimizing sequences and offer a geometric interpretation of these methods. Results of numerical experiments illustrating the convergence of the methods are given.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1996-08
Publisher
Cornell University
Keywords
theory center
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/96-255
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report