eCommons

 

Chemotaxis in Microfluid Channels

Other Titles

Abstract

Using microfluidic channels for in vivo experiments in biology reduces the dimensions of an experiment to a cellular scale. This increases precision in the spatiotemporal control of chemical signals applied to a cell membrane which is crucial in quantifying resulting changes in the conformation and distribution of membrane and intracellular proteins. We have designed microfluidic experiments to study chemotaxis in the amoeba Dictyostelium discoideum. In a natural environment, these cells use chemical signaling to begin starvation-induced aggregation. Cells generate a complex pattern of cyclic adenosine monophosphate (cAMP) that drives their migration toward a self-organized central point. To better determine which aspects of a gradient trigger a chemotactic response, we used several microfluidic channels in which local cAMP concentration can be precisely manipulated by controlling flow through the device. We also used high-precision photolysis of molecularly caged cAMP to generate dynamic gradients that could be controlled on subsecond timescales. This led to observation of a number of different cellular mechanisms for turning in a changing gradient and established the necessity for statistical measurements of turning behavior under different conditions. This process was initiated with collection of data from four different stages in cell development that quantified how the tendency to maintain polarization increases with development time.

Journal / Series

Volume & Issue

Description

Doctoral thesis in Physics for Danica Wyatt with advisors James Sethna, Carl Franck and committee chair Eberhard Bodenschatz

Sponsorship

National Science Foundation, Nanobiotechnology Center, Max Planck Institute

Date Issued

2007-02-23T19:57:31Z

Publisher

Keywords

microfluidics; chemotaxis; Dictyostelium discoideum

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record