eCommons

 

First Steps towards Parameter Optimization of Bioelectrochemical Systems using a Microsystems Engineering Approach

Other Titles

Abstract

There is a growing interest in exploiting bioelectrochemical systems (BESs), such as microbial fuel cells, as an alternative energy source for sustainable living. Certain species of microorganisms, such as Pseudomonas aeruginosa 14 (PA14) wild type, produce electron carriers, Phenazines, which transfers electrons to the anode in the system and produce digital output signal. The electric current generation of BESs is influenced by many biophysical and biochemical parameters in the system, such as glucose level, cell culture community, cell density, PH, and oxygen level. The existing MFCs are at macroscale, and not suitable for parameter optimization; and as a result they are not yet cost effective. Here, we present our first effort in parameter optimization of BESs using a microfluidic device. Microfluidic device affords us an ability to quickly define a physical and chemical environment for PA14, and its compatibility with microscope allows us a real time observation of the responses. We will present experimental results on the roles of carbon sources in PA14 motility and promising results of Phenazines being a chemoattractant to PA14. We will discuss the relation between PA14 motility and biofilm formation, and subsequently electric current generation.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2011-05-27

Publisher

Keywords

microfluidic device; microbial fuel cells; bioelectrochemical systems; Pseudomonas Aeruginosa; Phenazines; carbon sources; bacteria motility; chemotaxis; biofilm formation; microscale environmental control; glucose; 2,3-butanediol; parameter optimization; microscope imaging; electrotaxis; chemical gradient generator; run and tumble swimming motility; 2D bacteria tracking program

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

article
dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record