3D Printing Food, Foam And Forces: Additive Manufacturing Of Edible Constructs, Cellular Structures And Actuators

Other Titles


The work presented here advances the field of Additive Manufacturing using direct write processes. Additive manufacturing (AM) is a broad set of processes that apply material, layer by layer to produce an object. Traditionally these processes have been used for rapid prototyping in industry. AM process are valued for their ability to produce objects quickly without custom tooling allowing for small volume production runs and the generation of custom products in a cost effective way. They are also valued for their ability to produce shapes of geometric complexity too difficult or too expensive for other processes to produce. Direct write processes allow for the widest range of material to be additively manufactured and are used from fields as diverse as bio-fabrication to zinc-air battery fabrication. In this thesis I have developed techniques and materials which allow AM to be applied to the field of food, foam, and actuator production. The work on food production focuses on processes and additives which allow grains and proteins to be shape stable through traditional cooking processes. It also expands upon how to develop a parametric design space for a food item allowing its nutritional content to be customized. The work on foam production studies how viscous thread instability can be induced in a direct write system to produce complex foamed structures implicitly through the pathing processes. This is a new and distinct method of producing foam objects which allows DW systems to product foams on a smaller scale than traditional explicit design methods. It also allows for the production of structures with a highly tunable elastic modulus. This property was used to develop a needle injection simulator. The work on the production of actuators lead to the development of a novel class of actuator. Electrically Active Hydraulic Solids (EAHS) are a combination of conductive elements, phase change material and elastomer which can be shaped using direct write, injection molding, and cutting techniques. These new actuators self-heat using electrical current and can generate high forces.

Journal / Series

Volume & Issue



Date Issued




3D printing; Additive Manufacturing; Solid Freeform Fabrication


Effective Date

Expiration Date




Union Local


Number of Workers

Committee Chair


Committee Co-Chair

Committee Member

Shepherd,Robert F.

Degree Discipline

Mechanical Engineering

Degree Name

Ph. D., Mechanical Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)


Link(s) to Reference(s)

Previously Published As

Government Document




Other Identifiers


Rights URI


dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record