eCommons

 

Superlinear Convergence of a Minimax Method

dc.contributor.authorHan, Shih-Pingen_US
dc.date.accessioned2007-04-23T18:21:16Z
dc.date.available2007-04-23T18:21:16Z
dc.date.issued1978-02en_US
dc.description.abstractTo solve a minimax problem Han [1977b] suggested the use of quadratic programs to find search directions. If the matrices in the quadratic programs are positive definite, the method can be shown convergent globally. In this paper we study that for efficiency the matrices should also be good approximations to a certain convex combination of Hessians on some subspace. Therefore, we suggest Powell's scheme [Powell 1977] for updating these matrices. By doing so, we can avoid computing Hessians. Meanwhile, the matrices maintain positive definiteness and Han's global convergence theorems can apply. Besides, the convergence of the resulting method is superlinear, indeed.en_US
dc.format.extent722098 bytes
dc.format.extent220886 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR78-336en_US
dc.identifier.urihttps://hdl.handle.net/1813/7456
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleSuperlinear Convergence of a Minimax Methoden_US
dc.typetechnical reporten_US

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
78-336.pdf
Size:
705.17 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
78-336.ps
Size:
215.71 KB
Format:
Postscript Files