Superlinear Convergence of a Minimax Method
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
To solve a minimax problem Han [1977b] suggested the use of quadratic programs to find search directions. If the matrices in the quadratic programs are positive definite, the method can be shown convergent globally. In this paper we study that for efficiency the matrices should also be good approximations to a certain convex combination of Hessians on some subspace. Therefore, we suggest Powell's scheme [Powell 1977] for updating these matrices. By doing so, we can avoid computing Hessians. Meanwhile, the matrices maintain positive definiteness and Han's global convergence theorems can apply. Besides, the convergence of the resulting method is superlinear, indeed.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1978-02
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR78-336
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report