eCommons

 

Halting and Equivalence of Program Schemes in Models of Arbitrary Theories

Other Titles

Abstract

In this note we consider the following decision problems. Let S be a fixed first-order signature. (i) Given a first-order theory or ground theory T over S of Turing degree A, a program scheme p over S, and input values specified by ground terms t1,...,tn, does p halt on input t1,...,tn in all models of T? (ii) Given a first-order theory or ground theory T over S of Turing degree A and two program schemes p and q over S, are p and q equivalent in all models of T? When T is empty, these two problems are the classical halting and equivalence problems for program schemes, respectively. We show that problem (i) is Sigma^A_1-complete and problem (ii) is Pi^A_2-complete. Both problems remain hard for their respective complexity classes even if S is restricted to contain only a single constant, a single unary function symbol, and a single monadic predicate. It follows from (ii) that there can exist no relatively complete deductive system for scheme equivalence over models of theories of any Turing degree.

Journal / Series

Volume & Issue

Description

Sponsorship

NSF CCF-0635028

Date Issued

2010-05-19T16:04:59Z

Publisher

Keywords

dynamic model theory; program scheme; scheme equivalence

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record