eCommons

 

3D simulations of self-propelled, reconstructed jellyfish using vortex methods

Other Titles

Abstract

We present simulations of the vortex dynamics associated with the self-propelled motion of jellyfish. The geometry is obtained from image segmentation of video recordings from live jellyfish. The numerical simulations are performed using three-dimensional viscous, vortex particle methods with Brinkmann penalization to impose the kinematics of the jellyfish motion. We study two types of strokes recorded in the experiment. The first type (Stroke A) produces two vortex rings per stroke: one outside the bell during the power stroke and one inside the bell during the recovery stroke. The second stroke type (B) produces three vortex rings: one ring during the power stroke and two vortex rings during the recovery stroke. Stroke B is found to produce a faster motion than stroke A. The speed of the jellyfish scales with the square root of the Reynolds number.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2009-10-16T17:09:55Z

Publisher

Keywords

jellyfish; flow; particle vortex method; vortex dynamics

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

video/moving image

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record