eCommons

 

ESSAYS ON ECONOMETRIC IDENTIFICATION OF NETWORK AND CHOICE MODELS WITH LIMITED CONSIDERATION

Other Titles

Abstract

This dissertation is comprised of two papers. In the first paper (Chapter \ref{ch2}), I obtain informative bounds on network statistics in a partially observed network whose formation I explicitly model. Partially observed networks are commonplace due to, for example, partial sampling or incomplete responses in surveys. Network statistics (e.g., centrality measures) are not point identified when the network is partially observed. Worst-case bounds on network statistics can be obtained by letting all missing links take values zero and one. I dramatically improve on the worst-case bounds by specifying a structural model for network formation. An important feature of the model is that I allow for positive externalities in the network-formation process. The network-formation model and network statistics are set identified due to multiplicity of equilibria. I provide a computationally tractable outer approximation of the joint identified region for preferences determining network-formation processes and network statistics. In a simulation study on Katz-Bonacich centrality, I find that worst-case bounds that do not use the network formation model are 44 times wider than the bounds I obtain from my procedure. The second paper (Chapter \ref{ch3}) is concerned about learning decision makers' (DMs) preferences using data on observed choices from a finite set of risky alternatives with monetary outcomes. This chapter is coauthored with Levon Barseghyan and Francesca Molinari. We propose a discrete choice model with unobserved heterogeneity in consideration sets (the collection of alternatives considered by DMs) and unobserved heterogeneity in standard risk aversion. In this framework, stochastic choice is driven both by different rankings of alternatives induced by unobserved heterogeneity in risk preferences and by different sets of alternatives considered. We obtain sufficient conditions for semi-nonparametric point identification of both the distribution of unobserved heterogeneity in preferences and the distribution of consideration sets. Our method yields an estimator that is easy to compute and that can be used in markets with a large number of alternatives. We apply our method to a dataset on property insurance purchases. We find that although households are on average strongly risk averse, they consider lower coverages more frequently than higher coverages. Finally, we estimate the monetary losses associated with limited consideration in our application.

Journal / Series

Volume & Issue

Description

185 pages

Sponsorship

Date Issued

2020-05

Publisher

Keywords

Econometrics; Identification; Limited Consideration; Networks; Partial Identification; Structural

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Molinari, Francesca

Committee Co-Chair

Committee Member

Easley, David
Barseghyan, Levon
Stoye, Joerg

Degree Discipline

Economics

Degree Name

Ph. D., Economics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record