eCommons

 

Study of In-plant Sensing for the Precise Control of Water Use in Agriculture

Other Titles

Author(s)

Abstract

Climate change in recent years has induced extreme weather conditions that negatively impact food production and cause increased crop losses. As the world population grows, there is an emerging need to make agriculture more robust, efficient and productive. Understanding the plant dynamics becomes more important than ever for enhancing the agricultural water use efficiency (WUE), a key factor in shaping long-term agricultural development. Plant water stress is dynamic, resulting from rapid changes in evapotranspiration (ET) due to coupling to the atmosphere and slow changes in water availability due to soil dehydration. Stem water potential (SWP) integrates the water stress across the soil-plant-atmosphere-continuum (SPAC) and is therefore useful for scheduling plant-based precision irrigation. The micro-tensiometer (µTM) can provide valuable physiological information about a plant's drought response by monitoring the plant's ability to manage its water needs when facing environmental stress. With its continuous and real-time measurements, the µTM opens up a new opportunity to investigate system control strategies for improving WUE. In this thesis, we study the possibility of integrating the µTM within a water stress monitoring feedback framework for controlled water delivery to important fruit crops such as apple. We present our exploration of plants' responses to well-controlled irrigation events. We discover that the transient of root water uptake is likely to change after the growing season, resulting in increased sensitivity to daytime (more stressed state) rewatering. Additionally, we find that the plant and the soil become more decoupled as dehydration proceeds, resulting in persistent disequilibrium. The acquired data will be used to continue refining the existing hydraulic circuit models of apple under drought stress, thus finalizing a virtual representation of this speciality crop, or “digital twin”. The combination of the µTM and the model provides a valuable tool to reveal the full dynamics behind plant water stress and better agricultural water management across different phenological stages.

Journal / Series

Volume & Issue

Description

134 pages

Sponsorship

Date Issued

2020-12

Publisher

Keywords

Circuit Model; Control; Irrigation Management; Micro-Tensiometer; Plant Water Relations; Soil-Plant-Atmosphere Continuum

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Stroock, Abraham Duncan

Committee Co-Chair

Committee Member

You, Fengqi
Cheng, Lailiang

Degree Discipline

Chemical Engineering

Degree Name

M.S., Chemical Engineering

Degree Level

Master of Science

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution-NonCommercial-ShareAlike 4.0 International

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record