eCommons

 

New Perspectives On The Management Of Helicoverpa Zea (Boddie) (Lepidoptera: Noctuidae) In United States Sweet Corn: Implications For 21St Century Production And Integrated Pest Management Practices

Other Titles

Abstract

Helicoverpa zea (Boddie), the corn earworm, is a polyphagous caterpillar pest found throughout the United States and is a key pest of sweet corn. Chapter one is a review of literature relevant to the biology, ecology and management of H. zea in United States sweet corn production. Chapter two evaluates the predictive ability of male moth pheromone trap catch alone compared to a model that incorporates multiple factors on the biology and development of H. zea and the environment. Chapter three tests the efficacy of insecticides, registered for use against H. zea in sweet corn, in context to important timing windows during sweet corn ear development, as outlined in chapter two. The epilogue summarizes conclusions and identifies areas of future research. Chapter one is a comprehensive review of the literature relating to the biology, ecology and management of H. zea in United States sweet corn production. First, H. zea behavior, development, host interactions and ecology are reviewed, including host range, dispersal and migration, diapause and overwintering. Next, integrated pest management (IPM) practices for control of H. zea are discussed. Then, current tools including cultural, biological, chemical and transgenic controls for H. zea are reviewed. Finally, research needs likely to be of importance for management of H. zea in coming years are outlined. Female H. zea oviposit on sweet corn silks and yield loss occurs when neonates migrate into the ear under the husk to feed because a single larva can cause complete economic loss if the ear is for fresh market purposes. Chapter two examines current integrated pest management (IPM) guidelines for sweet corn that use pheromone trap-captured male H. zea moths to inform management decisions compared to models inclusive of additional factors relevant to ovipositional behavior or development of H. zea. Results of logistic regression and predictive discriminant analyses demonstrate that using multiple environmental and biological factors do, in fact, provide a higher predictive power than pheromone trap catch alone. These results show that IPM strategies to control H. zea damage in sweet corn should use multiple biological and environmental factors important for oviposition and infestation, and that pheromone trap catch alone is not the best predictor of damage at harvest. Chapter three draws on the conclusions of chapter 2, asking whether sweet corn can be protected more effectively if insecticides are applied to target the most attractive silking periods for female H. zea oviposition. The relationship between insecticide application timing from tassel through silk stages and marketable yield at harvest were evaluated in the field. Results were compared to yields resulting from current IPM recommendations for the northeast United States. The effectiveness of three registered insecticides (methomyl, chlorantraniliprole and lambda-cyhalothrin), each representing a different class of insecticide, were evaluated. Significant yield differences among insecticides and timing treatments were detected and the combined effects of active ingredient with timing determined the extent of H. zea damage. The efficacy of chlorantraniliprole as an effective means of H. zea control in sweet corn was unclear. In year 1, there was no significant effect of insecticide type or application timing, but there was a significant interaction effect between factors. In year 2, there was a significant effect of insecticide type. Chlorantraniliprole treatments resulted in significantly higher percentages of sweet corn ears compared to lambda-cyhalothrin. There was also a main effect of application timing. Four insecticide applications made from 50% tassel to 25% dry silk resulted in significantly higher percentages of clean ears at harvest compared with a single insecticide application made at 50% tassel. Compared to other timing treatments, however, there were no significant differences. 4 The epilogue provides a summary of conclusions reached from chapters one through three. This section also discusses areas of future research that include plant-insect dynamics, chemical ecology and possibilities for advancement of IPM strategies for H. zea management in the 21st century. 5

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2015-05-24

Publisher

Keywords

corn earworm; zea mays; insect-plant interactions

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Shelton,Anthony M

Committee Co-Chair

Committee Member

Nault,Brian A.

Degree Discipline

Entomology

Degree Name

M.S., Entomology

Degree Level

Master of Science

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record