Slip Complexity in a Crustal-Plane Model of an Earthquake Fault
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
We study numerically the behavior of a two-dimensional elastic plate (acrustal plane) that terminates along one of its edges at a homogeneous fault boundary. Slip-weakening friction at the boundary, inertial dynamics in the bulk, and uniform slow loading via elastic coupling to a substrate combine to produce a complex, deterministically chaotic sequence of slipping events. We observe a power-law distribution of small to moderately large events and an excess of very large events. For the smaller events, the moments scale with the rupture length in a manner that is consistent with seismological observations. For the largest events, rupture occurs in the form of narrow propagating pulses.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1994-10
Publisher
Cornell University
Keywords
theory center
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/94-196
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report