Factors underlying rapid reproductive protein evolution in Drosophila
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
Biologists have long noted the tremendous diversity of behaviors, morphological traits and molecules involved in mating and reproduction. In this thesis, I investigate the molecular evolution of reproductive proteins in the vinegar fly Drosophila melanogaster, focusing on a class of ejaculate proteins known as accessory gland proteins (?Acps?). Previous work has documented extensive evidence for rapid, adaptive evolution of some Acps. It is generally thought that male-female interactions, e.g., sexual conflict and cryptic female choice, drive rapid Acp evolution, although evidence specifically favoring this hypothesis in D. melanogaster is limited. Here, I describe biochemical and structural studies on a particularly rapidly evolving Acp, ovulin. I argue that structural features of ovulin may contribute to its ability to tolerate high sequence diversity. I also investigate the molecular evolution of a class of Acps and female reproductive tract proteins that (I argue) are particularly likely to undergo co-evolution between males and females, namely proteolysis regulators and targets of proteolysis. I show that a number of proteolysis regulators and targets are subject to positive selection, and find evidence of male-female co-evolution. Finally, I critically examine an underlying assumption of many divergence based methods for inferring positive selection ? the assumption of phylogenetic congruence between loci. I find that, within the genus Drosophila, at least two nodes show evidence for phylogenetic incongruence, possibly due to incomplete ancestral lineage sorting.