eCommons

 

Sustainable and Healthy Communities through Integrating Mobility Simulations in the Urban Design Process

Other Titles

Abstract

Rapid urbanization and new global construction estimated to be 250x NYC by 2050 is increasing traffic congestion, pollution, and related health threats. Thus, it is imperative that we develop new modeling capabilities that allow urban designers to quantify the performance of mobility solutions, sustainability, public health impacts, pedestrian thermal comfort and pollution exposure during the earliest stages of a design process. Embedded in a generative, performance-driven design process, such a tool can significantly facilitate the design of healthy and sustainable urban habitats that promote active mobility. Outdoor thermal comfort simulation simulations rely on the mean radiant temperature (MRT) seen by pedestrians as an important input that remains difficult to compute. Especially for large urban models, computing relevant surface temperatures and radiation fluxes that make up the MRT is a daunting task in terms of simulation setup and the computational overhead. We propose a new algorithm to estimate exterior surface temperatures of building facades, roofs, and ground surfaces in an arbitrary urban 3D model.

Journal / Series

Volume & Issue

Description

Final Report

Sponsorship

U.S. Department of Transportation 69A3551747119

Date Issued

2021-01-27

Publisher

Keywords

Walkability; active mobility; urban design; computational design; modeling; software

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution 4.0 International

Types

report

Accessibility Feature

reading order; structural navigation; tagged PDF

Accessibility Hazard

unknown

Accessibility Summary

Link(s) to Catalog Record