eCommons

 

Decomposition of Algebraic Functions

Other Titles

Abstract

Functional decomposition--whether a function f(x) can be written as a composition of functions g(h(x)) in a nontrivial way--is an important primitive in symbolic computation systems. The problem of univariate polynomial decomposition was shown to have an efficient solution by Kozen and Landau [8]. Dickerson [5] and von zur Gathen [11] gave algorithms for certain multivariate cases. Zippel [13] showed how to decompose rational functions. In this paper, we address the issue of decomposition of algebraic functions. We show that the problem is related to univariate resultants in algebraic function fields, and in fact can be reformulated as a problem of resultant decomposition. We give an algorithm for finding a nontrivial decomposition of a given algebraic function if it exists. The algorithm involves genus calculations and constructing transcendental generators of fields of genus zero.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1994-02

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR94-1410

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record