Metric Embeddings with Relaxed Guarantees
No Access Until
Permanent Link(s)
Other Titles
Abstract
We consider the problem of embedding finite metrics with "slack": we seek to produce embeddings with small dimension and distortion while allowing a (small) constant fraction of all distances to be arbitrarily distorted. This definition is motivated by recent research in the networking community, which achieved striking empirical success at embedding Internet latencies with low distortion into low-dimensional Euclidean space, provided that some small slack is allowed. Answering an open question of [Kleinberg, Slivkins, and Wexler, IEEE FOCS 2004], we show that provable guarantees of this type can in fact be achieved in general: any finite metric can be embedded, with constant slack and constant distortion, into constant-dimensional Euclidean space. We then show that there exist stronger embeddings into L1 which exhibit "gracefully degrading" distortion: these is a single embedding into L1 that achieves distortion at most O(log 1/epsilon) on all but at most an epsilon-fraction of distances, simultaneously for all epsilon greater than 0. We extend this with distortion O(log 1/epsilon)^{1/p} to maps into general Lp, p greater than or equal to 1 for several classes of metrics, including those with bounded doubling dimension and those arising from the shortest-path metric of a graph with an excluded minor. Finally, we show that many of our constructions are tight, and give a general technique to obtain lower bounds for epsilon-slack embeddings from lower bounds for low-distortion embeddings.