eCommons

 

Endothelial Tip-Stalk Cell Pattern Formation As A Function Of Gene Regulatory Architecture

Other Titles

Abstract

Endothelial tip-stalk selection may determine the initial spacing of angiogenic sprouts from a previously uniform layers of cells. The mathematical model presented here predicts the onset conditions and equilibrium spacing of tip-stalk patterns in the presence of elevated VEGF. A linear stability analysis identified the network elements that enabled tissue-scale patterning, while a numerical simulation predicted the final density of tip cells. The assumptions of this model may have selected endothelial tip cells in an unusually high density if they were to become candidates for sprout outgrowth. Including filopodia or cytonemes that extended the effective range of juxtacrine signaling was only mechanism that enabled sparser patterns. This model provides an early experimental target for observing the controlled breakdown of symmetry in a uniform layer of mammalian cells as predicted by Turing, and may yield insight into the self-assembly of blood vessels, in vitro and in vivo.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2014-08-18

Publisher

Keywords

Angiogenesis; Pattern formation; Systems biology

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Stroock, Abraham Duncan

Committee Co-Chair

Committee Member

Lucks, Julius
Varner, Jeffrey D.

Degree Discipline

Chemical Engineering

Degree Name

M.S., Chemical Engineering

Degree Level

Master of Science

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record