The role of true finiteness in the admissible recursively enumerable degrees

Other Titles
Abstract
When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, there are some constructions which make an essential use of the notion of finiteness which cannot be replaced by the generalized notion of alpha-finiteness. As examples we discuss both codings of models of arithmetic into the recursively enumerable degrees, and non-distributive lattice embeddings into these degrees. We show that if an admissible ordinal alpha is effectively close to omega (where this closeness can be measured by size or by cofinality) then such constructions may be performed in the alpha-r.e. degrees, but otherwise they fail. The results of these constructions can be expressed in the first-order language of partially ordered sets, and so these results also show that there are natural elementary differences between the structures of alpha-r.e. degrees for various classes of admissible ordinals alpha. Together with coding work which shows that for some alpha, the theory of the alpha-r.e. degrees is complicated, we get that for every admissible ordinal alpha, the alpha-r.e. degrees and the classical r.e. degrees are not elementarily equivalent.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2004-07-16T18:39:00Z
Publisher
Keywords
Admissible Recursion Theory; Recursively Enumerable Degrees; Finite
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
bibid: 6475944
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record