Stable Finite Elements for Problems With Wild Coefficients
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
We consider solving an elliptic boundary value problem in the case that the coefficients vary by many orders of magnitude over the domain. A linear finite element method is used. It is shown that the standard method for solving the resulting linear equations in finite-precision arithmetic can give an arbitrarily inaccurate answer because of ill-conditioning in the stiffness matrix. A new method for solving the linear equations is proposed. This method is based on a "mixed formulation" and gives a numerically accurate answer independent of the variation in the coefficients. The numerical error in the solution of the linear system for the new method is shown to depend on the aspect ratio of the triangulation.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1993-06
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR93-1364
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report