Estimating identification disclosure risk using mixed membership models
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Abstract
Statistical agencies and other organizations that disseminate data are obligated to protect data subjects' confi dentiality. For example, ill-intentioned individuals might link data subjects to records in other databases by matching on common characteristics (keys). Successful links are particularly problematic for data subjects with combinations of keys that are unique in the population. Hence, as part of their assessments of disclosure risks, many data stewards estimate the probabilities that sample uniques on sets of discrete keys are also population uniques on those keys. This is typically done using log-linear modeling on the keys. However, log-linear models can yield biased estimates of cell probabilities for sparse contingency tables with many zero counts, which often occurs in databases with many keys. This bias can result in unreliable estimates of probabilities of uniqueness and, hence, misrepresentations of disclosure risks. We propose an alternative to log-linear models for datasets with sparse keys based on a Bayesian version of grade of membership (GoM) models. We present a Bayesian GoM model for multinomial variables and off er an MCMC algorithm for fitting the model. We evaluate the approach by treating data from a recent US Census Bureau public use microdata sample as a population, taking simple random samples from that population, and benchmarking estimated probabilities of uniqueness against population values. Compared to log-linear models, GoM models provide more accurate estimates of the total number of uniques in the samples. Additionally, they offer record-level predictions of uniqueness that dominate those based on log-linear models.
Journal / Series
Volume & Issue
Description
Sponsorship
This research was supported by grants from the National Institutes of Health (R21 AG032458-02) and National Science
Foundation (SES-11-31897).
Date Issued
2012
Publisher
Journal of the American Statistical Association
Keywords
Confidentiality; Disclosure; latent class; grade of membership
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
D. Manrique-Vallier and J. P. Reiter (2012) “Estimating identification disclosure risk using mixed membership models,” Journal of the American Statistical Association, 107, 1385 – 1394.
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
article