Single Cell Characterization Of Biochemical Noise And Variable Response To Chemical Inhibition

Other Titles


Individual cells utilize series of biochemical reactions, called signaling pathways, to translate environmental conditions to physiological responses. Consequently, the emergent properties of these signaling pathways are constrained to the physico-chemical laws of their biochemical constituents - they are strongly dependent on the number of molecular components per cell, intrinsically stochastic (noisy), and are inherently nonlinear. While these properties provide the plasticity required for a functioning living system, they present challenges for our understanding and control of cellular behavior. In this thesis I present single cell measurements (i.e. flow cytometry data) and physical models that we developed to track fluctuations in protein and phospho-protein abundance throughout biochemical reaction networks, and demonstrate how the nonlinear properties of biochemical reactions produce unique network responses to the targeted chemical inhibition of enzymes. We track the logarithmic fluctuations of biochemical components using a system of chemical Langevin equations and the corresponding Lyapunov equation. Used together, these equations uncover the connection between the organization of signaling pathway constituents and the covariance matrix estimated from the experimental data. With this formalism we theoretically explore the unique covariance representations of various signaling pathways, and experimentally validate our method in two established systems: a synthetic E. coli gene regulatory network and the Mitogen Activated Protein Kinase (MAPK) cascade in primary mouse T lymphocytes. In addition, we use single cell measurements to mechanistically uncover the unique responses of signaling pathways, analog or digital, to targeted chemical inhibition. We extend these short time-scale properties of signaling pathways to a functional response, proliferation. Lastly, we show how the endogenous diversity of protein abundance among single cell clones provides a mechanism of resilience to chemical inhibition. Together, our combined experimental and theoretical approach provides novel insights to cellular systems, a method for directional inference, and optimal drug selection.

Journal / Series

Volume & Issue



Date Issued




tumor microenvironment


Effective Date

Expiration Date




Union Local


Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Physiology, Biophysics & Systems Biology

Degree Name

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)


Link(s) to Reference(s)

Previously Published As

Government Document




Other Identifiers


Attribution-NonCommercial-NoDerivatives 4.0 International


dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record