eCommons

 

The S-Matrix Formulation Of Quantum Statistical Mechanics, With Applications To Cold Quantum Gas

Other Titles

Author(s)

Abstract

A novel formalism of quantum statistical mechanics, based on the zero-temperature S-matrix of the quantum system, is presented in this thesis. In our new formalism, the lowest order approximation ("two-body approximation") corresponds to the exact resummation of all binary collision terms, and can be expressed as an integral equation reminiscent of the thermodynamic Bethe Ansatz (TBA). Two applications of this formalism are explored: the critical point of a weakly-interacting Bose gas in two dimensions, and the scaling behavior of quantum gases at the unitary limit in two and three spatial dimensions. We found that a weakly-interacting 2D Bose gas undergoes a superfluid transition at Tc [ALMOST EQUAL TO] 2[pi]n/[m log(2[pi]/mg )], where n is the number density, m the mass of a particle, and g the coupling. In the unitary limit where the coupling g diverges, the two-body kernel of our integral equation has simple forms in both two and three spatial dimensions, and we were able to solve the integral equation numerically. Various scaling functions in the unitary limit are defined (as functions of [MICRO SIGN]/T ) and computed from the numerical solutions. For bosons in three spatial dimensions, we present evidence that the gas undergoes 3 a strongly interacting version of Bose-Einstein condensation at n[lamda]T [ALMOST EQUAL TO] 1.3, where n is the number density and [lamda]T is the thermal wavelength. Finally, we look at the ratio of shear viscosity to entropy density [eta]/s of the unitary quantum gas, which has a conjectured lower bound of [eta]/s [GREATER-THAN OR EQUAL TO] /4[pi]kb based on the AdS/CFT correspondence of a strongly coupled Yang-Mills theory.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2011-08-31

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Leclair, Andre Roger

Committee Co-Chair

Committee Member

Mueller, Erich
Gruner, Sol Michael

Degree Discipline

Physics

Degree Name

Ph. D., Physics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record