eCommons

 

PREDICTING PARALLEL APPLICATION PERFORMANCE VIA MACHINE LEARNING APPROACHES

Other Titles

Abstract

Consistently growing architectural complexity and machine scales make creating accurate performance models for large-scale applications increasingly challenging. Traditional analytic models are difficult and time-consuming to construct, and are often unable to capture full system and application complexity. To address these challenges, we automatically build models based on execution samples. We use multilayer neural networks, since they can represent arbitrary functions and handle noisy inputs robustly. In this thesis, we focus on two well known parallel applications whose variations in execution times are not well understood: SMG2000, a semicoarsening multigrid solver, and HPL, an open source implementation of LINPACK. We sparsely sample performance data on two radically different platforms across large, multi-dimensional parameter spaces and show that our models based on this data can predict performance within 2% to 7% of actual application runtimes.

Journal / Series

Volume & Issue

Description

Sponsorship

National Science Foundation Grant Number CCF-0444413; United States Department of Energy Grant Number W-7405-Eng-48

Date Issued

2007-07-31T15:25:21Z

Publisher

Keywords

high-performance computing; performance modeling; artificial neural networks

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record