eCommons

 

Gaussian copula for mixed data with missing values: model estimation and imputation

dc.contributor.authorZhao, Yuxuan
dc.contributor.chairUdell, Madeleine Richards
dc.contributor.committeeMemberJoachims, Thorsten
dc.contributor.committeeMemberNing, Yang
dc.date.accessioned2022-09-15T15:51:46Z
dc.date.available2022-09-15T15:51:46Z
dc.date.issued2022-05
dc.description188 pages
dc.description.abstractMissing data imputation forms the first critical step of many data analysis pipelines. For practical applications, imputation algorithms should produce imputations that match the true data distribution and handle data of mixed types. This dissertation develops new imputation algorithms for data with many different variable types, including continuous, binary, ordinal, and truncated and categorical values, by modeling data as samples from a Gaussian copula model. This semiparametric model learns the marginal distribution of each variable to match the empirical distribution, yet describes the interactions between variables with a joint Gaussian that enables fast inference, imputation with confidence intervals, and multiple imputation. This dissertation also develops specialized extensions to handle large datasets (with complexity linear in the number of observations) and streaming datasets (with online imputation).
dc.identifier.doihttps://doi.org/10.7298/611b-8239
dc.identifier.otherZhao_cornellgrad_0058F_13067
dc.identifier.otherhttp://dissertations.umi.com/cornellgrad:13067
dc.identifier.urihttps://hdl.handle.net/1813/111829
dc.language.isoen
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectGaussian copula
dc.subjectimputation
dc.subjectmissing data
dc.subjectmixed data
dc.subjectordinal data
dc.titleGaussian copula for mixed data with missing values: model estimation and imputation
dc.typedissertation or thesis
dcterms.licensehttps://hdl.handle.net/1813/59810.2
thesis.degree.disciplineStatistics
thesis.degree.grantorCornell University
thesis.degree.levelDoctor of Philosophy
thesis.degree.namePh. D., Statistics

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhao_cornellgrad_0058F_13067.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format