eCommons

 

Studies of Mechanical Behavior of HFPE-II-52 Polyimide in Extreme Environments

Other Titles

Author(s)

Abstract

Motivated by demanding applications of polyimides and polyimide matrix composites, this study aims to understand the mechanical behavior of HFPE-II-52 polyimide at high temperature. First, a temperature dependent constitutive model combining linear viscoelasticity with viscoplasticity was developed. The viscoplastic part of the model uses a power law flow potential with state variable evolution. The full model was fit to a set of tension tests including constant strain rate, multistep stress relaxation, and creep and recovery tests in a range of temperature 285-315C. Second, the effects of moisture on the mechanical properties of polyimide were investigated. Separate experiments were designed to study the effects of both hydrolytic degradation and plasticization. The experiments consist of exposing the material sample to high temperature, moisture saturated conditions over a range of times and temperatures. Following moisture exposure, compression tests were performed to measure the reductions of stiffness and yield stress. A temperature and moisture dependent kinetic model was then developed and was integrated with the previous viscoelastic and viscoplastic model. Third, under certain hygrothermal conditions such as rapid heating with moisture saturated polyimide, the material may fail by high pressure water vapor induced blistering. Built on prior modeling efforts, a finite element approach is used to simulate the material unstable void growth. The simulation approach provides a means for the prediction of the critical temperature of blistering under different heating rates and moisture levels and allows for an investigation of the importance of the effects of pressure, thermal softening, hydrolytic degradation and plasticization on the blistering failure of polyimide.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2017-08-30

Publisher

Keywords

Computer engineering; Mechanical engineering; Mechanics; finite element; high temperature polymer; mechanical behavior; moisture degradation; polyimide; void growth

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Zehnder, Alan Taylor

Committee Co-Chair

Committee Member

Silberstein, Meredith
Warner, Derek H.

Degree Discipline

Theoretical and Applied Mechanics

Degree Name

Ph. D., Theoretical and Applied Mechanics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution-ShareAlike 2.0 Generic

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record