Other Titles



The terahertz frequency bands are gaining increasing attention these days for the potential applications in imaging, sensing, spectroscopy, and communication. These applications can be used in a wide range of fields, such as military, security, biomedical analysis, material science, astronomy, etc. Unfortunately, utilizing these frequency bands is very challenging due to the notorious ”terahertz gap”. Consequently, current terahertz systems are very bulky and expensive, sometimes even require cryogenic conditions. Silicon terahertz electronics now becomes very attractive, since it can achieve significantly lower cost and make portable consumer terahertz devices feasible. However, due to the limited device fmax and low breakdown voltage, signal generation and processing on silicon platform in this frequency range is challenging. This thesis aims to tackle these challenges and implement high-performance terahertz systems. First of all, the devices are investigated under the terahertz frequency range and optimum termination conditions for maximizing the efficacy of the devices is derived. Then, novel passive surrounding networks are designed to provide the devices with the optimal termination conditions to push the performances of the terahertz circuit blocks. Finally, the high-performance circuit blocks are used to build terahertz systems, and system-level innovations are also proposed to push the state of the art forward. In Chapter 2, using a device-centric bottom-up design method, a 210-GHz harmonic oscillator is designed. With the parasitic tuning mechanism, a wide frequency tuning range is achieved without using lossy varactors. A passive network based on the return-path gap coupler and self-feeding structure is also designed to provide optimal terminations for the active devices to maximize the harmonic power generation. Fabricated with a 0.13-um SiGe BiCMOS process, the oscillator is highly compact with a core size of only 290x95 um2. The output frequency can be tuned from 197.5 GHz to 219.7 GHz, which is around 10.6% compared to the center frequency. It also achieves a peak output power and dc-to-RF efficiency of 1.4 dBm and 2.4%, respectively. The measured output phase noise at 1 MHz offset is -87.5 dBc/Hz. The high power, wide tuning range, low phase noise, as well as compact size, make this oscillator very suitable for terahertz systems integration. In Chapter 3, the design of a 320-GHz fully-integrated terahertz imaging system is described. The system is composed of a phase-locked high-power transmitter and a coherent high-sensitivity subharmonic-mixing receiver, which are fabricated using a 0.13-um SiGe BiCMOS technology. To enhance the imaging sensitivity, a heterodyne coherent detection scheme is utilized. To obtain frequency coherency, fully-integrated phase-locked loops are implemented on both the transmitter and receiver chips. According to the measurement, consuming a total dc power of 605 mW, the transmitter chip achieves a peak radiated power of 2 mW and a peak EIRP of 21.1 dBm. The receiver chip achieves an equivalent incoherent responsivity of more than 7.26 MV/W and a sensitivity of 70.1 pW under an integration bandwidth of 1 kHz, with a total dc power consumption of 117 mW. The achieved sensitivity with this proposed coherent imaging transceiver is around ten times better compared with other state-of-the-art incoherent imagers. In Chapter 4, a spatial-orthogonal ASK transmitter architecture for high-speed terahertz wireless communication is presented. The self-sustaining oscillator-based transmitter architecture has an ultra-compact size and excellent power efficiency. With the proposed high-speed constant-load switch, significantly reduced modulation loss is achieved. Using polarization diversity and multi-level modulation, the throughput is largely enhanced. Array configuration is also adopted to enhance the link budget for higher signal quality and longer communication range. Fabricated in a 0.13-um SiGe BiCMOS technology, the 220-GHz transmitter prototype achieves an EIRP of 21 dBm and dc-to- THz-radiation efficiency of 0.7% in each spatial channel. A 24.4-Gb/s total data rate over a 10-cm communication range is demonstrated. With an external Teflon lens system, the demonstrated communication range is further extended to 52 cm. Compared with prior art, this prototype demonstrates much higher transmitter efficiency. In Chapter 5, an entirely-on-chip frequency-stabilization feedback mechanism is proposed, which avoids the use of both frequency dividers and off-chip references, achieving much lower system integration cost and power consumption. Using this mechanism, a 301.7-to-331.8-GHz source prototype is designed in a 0.13-um SiGe BiCMOS technology. According to the measurement, the source consumes a dc power of only 51.7 mW. The output phase noise is -71.1 and -75.2 dBc/Hz at 100 kHz and 1 MHz offset, respectively. A -13.9-dBm probed output power is also achieved. Overall, the prototype source demonstrates the largest output frequency range and lowest power consumption while achieving comparable phase noise and output power performances with respect to the state of the art. All the designs demonstrated in this thesis achieve good performances and push the state of the art forward, paving the way for implementation of more sophisticated terahertz circuits and systems for future applications.

Journal / Series

Volume & Issue



Date Issued




silicon; Electrical engineering; Communication; Terahertz; Imaging; Integrated Circuit; SiGe


Effective Date

Expiration Date




Union Local


Number of Workers

Committee Chair

Afshari, Ehsan

Committee Co-Chair

Committee Member

Molnar, Alyosha Christopher
Pollock, Clifford Raymond

Degree Discipline

Electrical and Computer Engineering

Degree Name

Ph. D., Electrical and Computer Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)


Link(s) to Reference(s)

Previously Published As

Government Document




Other Identifiers


Rights URI


dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record