$L^P$-Estimates And Polyharmonic Boundary Value Problems On The Sierpinski Gasket And Gaussian Free Fields On High Dimensional Sierpinski Carpet Graphs
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
We define a suitable trace space on the set X halving the Sierpinski Gasket, then we prove Lp -estimates for p > 1 for the restriction operator on domLp INCREMENT. We also construct a right inverse to the restriction operator, that is the extension operator, and provide similar Lp -estimates. Then, we consider the polyharmonic boundary value problem which involves finding a biharmonic function with prescribed values and Laplacian values on the bottom line (identified with the interval) and top vertex of the SG. After constructing a suitable orthogonal basis of piecewise biharmonic splines, we express the solution to the BV P in terms of the Haar expansion coefficients of the prescribed data and this basis. After constructing a Sobolev type space on SG, which is analogous to the H 2 -Sobolev space in classical analysis, we prove how smoothness of the prescribed data is reflected in the smoothness of the solution to the BV P . In the second part of the thesis, we focus on Gaussian Free Fields on High dimensions Sierpinski Carpet graphs. We assume that a "hard wall" is imposed at height zero so that the field stays positive everywhere. Our first result, in the second part of the thesis, is a large deviation type estimate which identifies the rate of exponential decay for P(Ω+N ), namely the probability that the field stays positive. Then, in our second V theorem we prove the leading-order asymptotics for the local sample mean of the free field above the hard wall on any transient Sierpinski carpet graph.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
Publisher
Keywords
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Muscalu, Florin Camil