eCommons

 

PHASE RETRIEVAL WITH 4D-STEM: LIMITS ON SENSITIVITY, RESOLUTION, AND SPEED

Access Restricted

Access to this document is restricted. Some items have been embargoed at the request of the author, but will be made publicly available after the "No Access Until" date.

During the embargo period, you may request access to the item by clicking the link to the restricted file(s) and completing the request form. If we have contact information for a Cornell author, we will contact the author and request permission to provide access. If we do not have contact information for a Cornell author, or the author denies or does not respond to our inquiry, we will not be able to provide access. For more information, review our policies for restricted content.

No Access Until

2026-09-03
Permanent Link(s)

Other Titles

Abstract

Moore’s Law predicts that the number of transistors in an integrated circuit (IC) doubles approximately every two years, leading to a continuous reduction in the size of individual circuits. As features on ICs shrink to nanometer or even Ångstrom scales, conducting microscopic local studies poses significant challenges, demanding improved resolution of imaging methods. Scanning transmission electron microscopy (STEM) emerges as a standout solution for its unparalleled resolution in material characterization. Recent advances in segmented and pixelated detectors have driven the development of 4D-STEM. This approach captures a full diffraction pattern at each scanning position, offering a significant enhancement in phase retrieval applications such as magnetic imaging and super-resolution ptychography. This thesis explores how to optimize sensitivity, resolution, and/or speed as a function of the number of detector pixels in 4D-STEM. One application is successfully disentangling nanoscale magnetic contrast from grain contrast in a polycrystalline chiral magnetic thin film using a pixelated detector. Another outcome is a high-throughput super-resolution imaging method for 2D materials. By implementing upsampled electron ptychography with just a 4-pixel segmented detector, we achieved a 40% improvement in resolution compared to dark field and integrated differential phase contrast imaging on the same detectors. This extends the super-resolution imaging technique to segmented detectors and reveals opportunities to implement ptychography for in-situ temporal imaging with acquisition times down to the millisecond scale.

Journal / Series

Volume & Issue

Description

137 pages

Sponsorship

Date Issued

2024-08

Publisher

Keywords

Computational Imaging; Electron Microscopy; Magnetic Imaging; Ptychography

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Muller, David

Committee Co-Chair

Committee Member

Elser, Veit
Fuchs, Gregory

Degree Discipline

Applied Physics

Degree Name

Ph. D., Applied Physics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record