When Is A Truncated Heavy Tail Heavy?
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Authors
Abstract
This dissertation addresses the important question of the extent to which random variables and vectors with truncated power tails retain the characteristic features of random variables and vectors with power tails. We define two truncation regimes - soft truncation and hard truncation, based on the growth rate of the truncating threshold. We study the central limit theorem and the large deviations behavior of the model with truncated power laws in both regimes. The central limit theorem is studied for random vectors taking values in a separable Banach space, while for the large deviations, the random vectors are assumed to be Rd -valued. It turns out that, in the soft truncation regime, truncated power tails behave, in important respects, as if no truncation took place. On the other hand, in the hard truncation regime much of "heavy tailedness" is lost. Based on this observation, we set before ourselves two tasks. The first one is to suggest statistical tests to decide on whether the truncation is soft or hard. The second task is to devise an estimator for the tail exponent from the truncated data, which is consistent regardless of the truncation regime. Finally, we apply our methods to two recent data sets arising from computer networks.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2010-08-05T16:03:47Z
Publisher
Keywords
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis