eCommons

 

Transit Spectroscopy of the Extrasolar Planet HD209458b: The Search for Water

dc.contributor.authorRojo, Patricio M
dc.date.accessioned2006-09-15T15:32:06Z
dc.date.available2006-09-15T15:32:06Z
dc.date.issued2006
dc.description=== Committee members === Chair: Peter Gierasch. Member: Joseph Harrington (advisor). Minor Member: Warren Allmon. Field Appointed Member: Donald Campbell.en_US
dc.description.abstractThis dissertation describes an attempt to detect water in the atmosphere of the extrasolar planet HD209458b using transit spectroscopy. It first discusses the importance of water detection and reviews the state of knowledge about extrasolar planets. This review discusses the main statistical trends and describes the detection methods employed to this date. The importance of the transiting planets and the many measurements of the known ones are also discussed. A radiative transfer model designed and built specifically for this project predicts, given a planetary temperature/pressure/composition profile, the dependence in wavelength of the stellar spectrum modulation due to a transiting planet. A total of 352 spectra around 1.8 microns were obtained on four nights (three in transit) of observations on August 3--4, September 26, and October 3 of 2002 using ISAAC at the Very Large Telescope. Correlating the modeled modulation with the infrared spectra yields a non-detection of water in the atmosphere of \hdt. It is found that the non-detection is due to an unfortunate choice of observing parameters and conditions that made it impossible to reach the required sensitivity. Nonetheless, the results are scaled with synthetic spectra to place strong limits on the planetary system configurations for which the observing parameters and telluric conditions would have yielded a successful detection. None of the 10 other known transiting planets would be detectable with the choice of parameters and conditions for this observation. A quantitative model of an improved observing strategy for future observations of this kind is developed. The improvements include: airmass and timing constraints, the simultaneous observation of a calibrator star, and a new method to find the optimal wavelength range. The data-reduction process includes several original techniques that were developed during this work, such as a method to remove fringes from flat fields and several methods to correct for telluric absorption, among others. Some of the code developed for this project is available under the GNU General Public License at the DSpace Internet archive from Cornell University.en_US
dc.description.sponsorshipThe National Aeronautics and Space Administration under grant NAG5-13154 issued through the Science Mission Directorate.en_US
dc.format.extent12687340 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationApJ in press (September 2006)en_US
dc.identifier.urihttps://hdl.handle.net/1813/3512
dc.language.isoen_USen_US
dc.publisherSection 5.4 is being published by The Astrophysical Journalen_US
dc.relation.isformatofbibid: 6476205
dc.subjecttransiten_US
dc.subjectspectroscopyen_US
dc.subjectextrasolar planeten_US
dc.subjectdata analysisen_US
dc.subjectradiative transferen_US
dc.subjectdata reduction techniquesen_US
dc.titleTransit Spectroscopy of the Extrasolar Planet HD209458b: The Search for Wateren_US
dc.typedissertation or thesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dissertation.dspace_submitted2.pdf
Size:
12.1 MB
Format:
Adobe Portable Document Format