Advances In Nickel-Based Olefin Polymerization Catalysis

Other Titles
Abstract
Polyolefins comprise the majority of the world's plastics consumption. Polyethylene and polypropylene are the two most widely utilized materials due to their exceptional properties and their inexpensive monomer feedstock. However, the polymers' true success derives from the heterogeneous catalysts that produce them. The discovery of these catalysts by Ziegler and Natta in the mid 20th century allowed for the linearity of polyethylene and the regio- and stereoregularity of polypropylene to be inherent in the microstructures. Additionally, the catalysts' simplicity and effectiveness are what make them the primary method for the commercial synthesis of polyolefins. The homogenous analogues of the Ziegler-Natta catalysts have given researchers the opportunity to tailor the properties of the polyolefins even further. Early group metal catalysts have been prominently studied due to their similarity to the heterogeneous systems. However, the arrival of late-transition metal catalysis for olefin polymerization delivered the ability to control microstructures in new ways as well as tolerate functionality. This work describes the investigations into the development of new nickel-mediated processes for the polymerization of olefins. Nickel (II) !-diimine catalysts have been previously developed for the regioregular "-2 enchainment of !-olefins. However, controlling the tacticity has proven to be quite difficult. Chapter two describes work toward further controlling the stereoselectivity of these catalysts to produce "-2 enchain poly(!-olefins) with high isotacticity, and in the case of 1-butene, a new class of semi-crystalline polyolefins. Ligand sterics and electronics aid in the elucidating mechanistic insight into this unique polymerization. Chapter three regards the development of an open geometry neutral nickel catalyst exhibiting high activity in ethylene polymerizations. The presence of bulky substituents on an amidinate ligand protects the axial sites of an active square-planar nickel center from associative displacement of a growing polymer chain, producing higher molecular weight polymer with greater activities than previously reported catalysts of this type. The addition of copper (II) bromide further enhances the activity of the catalyst by producing higher turnovers and achieving a much more narrow molecular weight distribution. Possible explanations for the copper's effect are discussed.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2012-08-20
Publisher
Keywords
Olefin Polymerization; Catalyst; Nickel
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Coates, Geoffrey
Committee Co-Chair
Committee Member
Lewis, Chad Arthur
Dichtel, William Robert
Degree Discipline
Chemistry and Chemical Biology
Degree Name
Ph. D., Chemistry and Chemical Biology
Degree Level
Doctor of Philosophy
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record