eCommons

 

Magnetic Resonance Induced Heating in a Vascular Stent

Other Titles

Abstract

It is standard hospital practice to remove metallic objects from patients prior to MRIs. Since magnetic resonance imaging employs changing magnetic fields, even everyday items such as jewelry or keys run the risk of overheating due to induced currents leading to Joule heating. A potential problem arises, however, when the metal is subcutaneously located in the form of a medical implant. The present study evaluated this scenario by using finite element analysis to model a vascular stent under the influence of a standard MRI field. COMSOL Multiphysics software was used to conduct finite element analysis on two different stent sizes, each in the presence and absence of blood flow. The stents were modeled as stainless steel (type 316L) with internal diameters of 5mm and 8mm, length of 40mm, and wall thicknesses of 0.18mm and 0.22mm. The tests revealed that under the influence of blood cooling, the stents modeled did not overheat or cause arterial damage. Specifically, the large stent resulted in a maximum temperature of 310.807 K and the smaller stent led to 310.230 K, each after 30 minutes of heating. In the unrealistic absence of blood flow, the large and small stents reached maximum temperatures of 318.851 K and 312.297 K respectively. Ultimately, given variance in blood flow the true solutions lie somewhere in between the blood perfusion and static flow models.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2007-07-10T13:19:25Z

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

term paper

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record