On Oraclizable Networks and Kahn's Principle
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Authors
Abstract
In this paper we investigate generalizations of Kahn's principle to nondeterministic dataflow networks. Specifically, we show that for the class of "oraclizable" networks a semantic model in which networks are represented by certain sets of continuous functions is fully abstract and has the fixed-point property. We go on to show that the oraclizable networks are the largest class representable by this model, and are a proper superclass of the networks implementable with the infinity fair merge primitive. Finally, we use this characterization to show that infinity fair merge networks and oraclizable networks are proper subclasses of the networks with Egli-Milner monotone input-output relations.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1989-10
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR89-1046
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report