Simulating Two Pushdown Stores by One Tape in $O(n^{1.5}\sqrt{logn}$) Time. (Preliminary Version)

dc.contributor.authorLi, Mingen_US
dc.date.accessioned2007-04-23T17:08:38Z
dc.date.available2007-04-23T17:08:38Z
dc.date.issued1985-03en_US
dc.description.abstractBased on two graph separator theorems, one old (the Lipton-Tarjan planar separator theorem) and one new, we present two unexpected upper bounds and resolve several open problems for on-line computations: (1) 1 tape nondeterministic machines can simulate 2 pushdown stores in time $O(n^{1.5} \sqrt{logn})$ (true for both on-line and off-line machines). Together with the $\Omega (n^{1.5} \sqrt{logn})$ lower bound by the author [L1], this solved the open problem 1 in [DGPR] for the 1 tape vs. 2 pushdown case. It also disproves the commonly conjectured $\Omega (n^{2})$ lower bound. (Note, the $\Omega (n^{2})$ lower bound has been proved for the deterministic case [M, L, V].) (2) the languages defined by [M] and [F], aimed to obtain optimal lower bound for 1 tape nondeterministic machines, can be accepted in $O(n^{2}loglogn / \sqrt{logn})$ and $O(n^{1.5}\sqrt{logn})$ time by a 1 tape TM, respectively. (3) 3 pushdown stores are better than 2 pushdown stores. This answers open problem 3 of [DG]. (An $\Omega(n^{4/3} / log^{e} n)$ lower bound is also obtained.) (4) 1 tape can nondeterministically simulate 1 queue in $O(n^{1.5} \sqrt{logn})$ time. (The lower bounds were: $\Omega(n^{2})$ for deterministic case [V] and $\Omega(n^{4/3} / logn)$ [L1] for nondeterministic case.)en_US
dc.format.extent1333056 bytes
dc.format.extent310846 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR85-667en_US
dc.identifier.urihttps://hdl.handle.net/1813/6507
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleSimulating Two Pushdown Stores by One Tape in $O(n^{1.5}\sqrt{logn}$) Time. (Preliminary Version)en_US
dc.typetechnical reporten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
85-667.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
85-667.ps
Size:
303.56 KB
Format:
Postscript Files