eCommons

 

An Example of a Theorem that has Contradictory Relativizations and a Diagonalization Proof

dc.contributor.authorChang, Richarden_US
dc.date.accessioned2007-04-23T17:39:59Z
dc.date.available2007-04-23T17:39:59Z
dc.date.issued1989-11en_US
dc.description.abstractWe construct a computable space bound $S(n)$, with $n^{2} less than S(n) less than n^{3}$ and show by diagonalization that DSPACE [$S(n)$] = DSPACE [$S(n)$ log $n$]. Moreover, we can show that there exists an oracle $A$ such that DSPACE [$S(n)$] $\neq$ DSPACE$^{A}$[$S(n)$ log $n$]. This is a counterexample to the belief that is a theorem has contradictory relativizations, then is cannot be proved using standard techniques like diagonalization [7].en_US
dc.format.extent423955 bytes
dc.format.extent135677 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR89-1059en_US
dc.identifier.urihttps://hdl.handle.net/1813/6859
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleAn Example of a Theorem that has Contradictory Relativizations and a Diagonalization Proofen_US
dc.typetechnical reporten_US

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
89-1059.pdf
Size:
414.02 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
89-1059.ps
Size:
132.5 KB
Format:
Postscript Files