eCommons

 

Jacobi Structures And Differential Forms On Contact Quotients

dc.contributor.authorMahmood, Fatimaen_US
dc.contributor.chairSjamaar, Reyeren_US
dc.contributor.committeeMemberBerest, Yurien_US
dc.contributor.committeeMemberHolm, Tara S.en_US
dc.date.accessioned2013-01-31T19:46:33Z
dc.date.available2013-01-31T19:46:33Z
dc.date.issued2012-08-20en_US
dc.description.abstractIn the first part of this thesis, we generalize the notion of a Jacobi bracket on the algebra of smooth functions on a manifold to the notion of a Jacobi bracket on an abstract commutative algebra. We also prove certain useful properties of the Jacobi structure on a contact manifold. In the second part of this thesis, we develop a de Rham model for stratified spaces resulting from contact reduction. We show that the contact form induces a form on the quotient, and investigate the properties of the reduced contact form. We also describe a Jacobi bracket on the algebra of 0-forms on the singular contact quotient.en_US
dc.identifier.otherbibid: 7959749
dc.identifier.urihttps://hdl.handle.net/1813/31208
dc.language.isoen_USen_US
dc.subjectContact Geometryen_US
dc.subjectJacobi Structuresen_US
dc.titleJacobi Structures And Differential Forms On Contact Quotientsen_US
dc.typedissertation or thesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorCornell Universityen_US
thesis.degree.levelDoctor of Philosophy
thesis.degree.namePh. D., Mathematics

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fm88.pdf
Size:
429.13 KB
Format:
Adobe Portable Document Format