eCommons

 

Testing gravity with cosmology: efficient simulations, novel statistics and analytical approaches

Other Titles

Abstract

In the era of precision cosmology, a wide range of cosmological surveys, such as the LSST, DESI, Euclid and WFIRST will precisely probe the large-scale structure of the universe, shedding light on the nature of the dark sectors. Given how sensitively the growth of structure depends on the nature of the underlying gravitational field, this will be a unique opportunity to constrain the so-called Modified Gravity models (MG), that are theoretical alternatives to dark energy, which attempt to explain cosmic acceleration through a large-scale modification to General Relativity. In order to fully utilize the wealth of incoming data, however, theoretical predictions of structure formation in such alternative scenarios are necessary. Due to the existence of an additional degree of freedom that these models introduce, N-body simulations prove to be highly computationally expensive. In the first chapter of this thesis, we discuss how we can overcome this issue by using Lagrangian hybrid techniques, which can lead to a speed-up by 2 orders of magnitude, compared to the conventional tools, while still achieving % level of accuracy. Then, in chapter 2 we proceed to introduce novel statistics that can help us more confidently detect MG signals hidden in cosmic density fields, by up-weighting the significance of cosmic voids, where the MG-LambdaCDM degeneracy is broken. In the scales where structure formation is analytically tractable, finally, we show that we can make accurate analytical predictions for the two-point statistics of halos in MG, using Lagrangian perturbation theory and the Gaussian Streaming Model, simultaneously capturing, for the first time in modified gravity, the effects of both halo-bias (in chapter 3) and redshift space distortions (in chapter 4), effects crucial for the interpretation of photometric and spectroscopic observations. Our results demonstrate that a series of analytical, semi-analytical and simulation-based tools can be utilized in order to dramatically improve our understanding of the nature of cosmic acceleration and gravity at cosmic scales.

Journal / Series

Volume & Issue

Description

239 pages

Sponsorship

Date Issued

2020-08

Publisher

Keywords

Cosmology; Dark energy; General relativity; Gravity; Large Scale Structure; Modified gravity

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Bean, Rachel E.

Committee Co-Chair

Committee Member

Teukolsky, Saul A.
Chernoff, David Fisher
Riechers, Dominik A.

Degree Discipline

Astronomy and Space Sciences

Degree Name

Ph. D., Astronomy and Space Sciences

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record