Molecular Simulation Study of the Correlations Between Diblock Copolymer Microstructure and Transport Properties
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
Diblock copolymers (DBPs) are used in numerous current and potential applications, from composite materials to electrolyte membranes. Depending on the chemical incompatibility of the blocks and their volume fractions, they self-segregate into microdomains inducing anisotropy and different symmetries to the microstructure, resulting in significant variability in the macroscopic properties. DBPs are emerging as a candidate for replacing conventional liquid electrolytes in electrochemical devices, due to their improved chemical and mechanical stability. In contrast to isotropic melts, the self-segregation of DBPs allows the decoupling of ionic transport and mechanical properties. In this work, molecular dynamic simulations of coarse-grained DBPs were devised and carried out to unveil correlations between the microstructure and both ionic mobility (