eCommons

 

MOLECULARLY-COMPLETE PLANAR SUPPORTED CELL PLASMA MEMBRANES AS SCAFFOLDS FOR BIOMEDICAL APPLICATIONS

Other Titles

Abstract

Emerging technologies to study membrane proteins, protein-lipid interactions, and to create new kinds of sensing and analytical devices, use cell plasma membrane vesicles or ‘blebs’ as an intermediate to form molecularly complete, planar cell surface mimetics that are compatible with a variety of characterization tools and microscopy methods. This approach enables direct incorporation of membrane proteins into supported lipid bilayers without using detergents and reconstitution, preserving the native lipids and other species within the plasma membrane. However, the impact of methods used to induce cell blebbing (vesiculation) on protein and membrane properties is still unknown. This study focuses on characterization of the cell blebs created under various bleb-inducing conditions and its result on protein behavior (orientation, mobility, activity, etc.) and lipid scrambling in this platform. This work enriches our understanding of cell plasma membrane bleb bilayers as a biomimetic platform and represents one of few ways to make molecularly-complete supported bilayers from cell membranes. Such a model system can be widely applied to studies aimed at understanding the roles of membrane proteins as drug targets in drug delivery, in virus-host interactions, and in tissue engineering platforms, among many other bioanalytical and sensing applications. Here, we applied this biomimetic model system to studies of oncogenic micrcrovesicle interaction with stem cell surface. Combined with TIRF, the impact of microenvironment on binding and entry of microvesicle to stem cell surface will be revealed at the single particle level.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2017-08-30

Publisher

Keywords

Biomimetic platform; Cell plasma membrane vesicles; Chemical engineering; Single particle tracking; Supported lipid bilayer; Protein diffusion

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Daniel, Susan

Committee Co-Chair

Committee Member

Paszek, Matthew J.
Fischbach, Claudia

Degree Discipline

Chemical Engineering

Degree Name

M.S., Chemical Engineering

Degree Level

Master of Science

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record