eCommons

 

A Hessenberg-Schur Method for the Problem AX + XB = C

dc.contributor.authorGolub, Gene H.en_US
dc.contributor.authorNash, Stephenen_US
dc.contributor.authorVan Loan, Charlesen_US
dc.date.accessioned2007-04-23T18:22:20Z
dc.date.available2007-04-23T18:22:20Z
dc.date.issued1978-10en_US
dc.description.abstractONe of the most effective methods for solving the matrix equation AX + XB = C is the Bartels-Stewart algorithm. Key to this technique is the orthogonal reduction of A and B to triangular form using the QR algorithm for eigenvalues. A new method is proposed which differs from the Bartels-Stewart algorithm in that A is only reduced to Hessenberg form. The resulting algorithm is between 30 and 70 percent faster depending upon the dimensions of the matrices A and B. The stability of the new method is demonstrated through a roundoff error analysis and supported by numerical tests. Fianlly, it is shown how the techniques described can be applied and generalized to other matrix equation problems.en_US
dc.format.extent2137611 bytes
dc.format.extent1758139 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR78-354en_US
dc.identifier.urihttps://hdl.handle.net/1813/7472
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titleA Hessenberg-Schur Method for the Problem AX + XB = Cen_US
dc.typetechnical reporten_US

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
78-354.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
78-354.ps
Size:
1.68 MB
Format:
Postscript Files