eCommons

 

MNH: A Derivative-Free Optimization Algorithm Using Minimal Norm Hessians

Other Titles

Abstract

Abstract: We introduce MNH, a new algorithm for unconstrained optimization when derivatives are unavailable, primarily targeting applications that require running computationally expensive deterministic simulations. MNH relies on a trust-region framework with an underdetermined quadratic model that interpolates the function at a set of data points. We show how to construct this interpolation set to yield computationally stable parameters for the model and, in doing so, obtain an algorithm which converges to first-order critical points. Preliminary results are encouraging and show that MNH makes effective use of the points evaluated in the course of the optimization.

Journal / Series

TR1466

Volume & Issue

Description

Sponsorship

Date Issued

2008-01-18T14:01:27Z

Publisher

Keywords

Optimization Algorithm

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

article

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record