A Singular Loop Transformation Framework Based on Non-Singular Matrices

Other Titles
Abstract
In this paper, we discuss a loop transformation framework that is based on integer non-singular matrices. The transformations included in this framework are called $\Lambda$-transformations and include permutation, skewing and reversal, as well as a transformation called loop scaling. This framework is more general than the existing ones; however, it is also more difficult to generate code in our framework. This paper shows how integer lattice theory can be used to generate efficient code. An added advantage of our framework over existing ones is that there is a simple completion algorithm which, given a partial transformation matrix, produces a full transformation matrix that satisfies all dependences. This completion procedure has applications in parallelization and in the generation of code for NUMA machines.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1992-07
Publisher
Cornell University
Keywords
computer science; technical report
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR92-1294
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record