The Adaptive Multi-Factor Model and the Financial Market
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
Modern evolvements of the technologies have been leading to a profound influence on the financial market. The introduction of constituents like Exchange-Traded Funds, and the wide-use of advanced technologies such as algorithmic trading, results in a boom of the data which provides more opportunities to reveal deeper insights. However, traditional statistical methods always suffer from the high-dimensional, high-correlation, and time-varying instinct of the financial data. In this dissertation, we focus on developing techniques to stress these difficulties. With the proposed methodologies, we can have more interpretable models, clearer explanations, and better predictions. We start from proposing a new algorithm for the high-dimensional financial data -- the Groupwise Interpretable Basis Selection (GIBS) algorithm, to estimate a new Adaptive Multi-Factor (AMF) asset pricing model, implied by the recently developed Generalized Arbitrage Pricing Theory, which relaxes the convention that the number of risk-factors is small. We first obtain an adaptive collection of basis assets and then simultaneously test which basis assets correspond to which securities. Since the collection of basis assets is large and highly correlated, high-dimension methods are used. The AMF model along with the GIBS algorithm is shown to have significantly better fitting and prediction power than the Fama-French 5-factor model. Next, we do the time-invariance tests for the betas for both the AMF model and the FF5 in various time periods. We show that for nearly all time periods with length less than 6 years, the
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
Publisher
Keywords
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Ruppert, David
Mimno, David
Matteson, David