RATES, IMPORTANCE, AND CONTROLS OF NITROGEN FIXATION IN OLIGOTROPHIC ARCTIC LAKES, TOOLIK, ALASKA
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Authors
Abstract
Biological nitrogen (N) fixation of atmospheric N2 by free-living cyanobacteria in aquatic environments is common, and in many ecosystems, it can account for a significant portion of the biologically available N inputs. Although N fixation can compensate for N limitation, N limitation is maintained over relatively long time scales in many oligotrophic lake ecosystems. This dissertation examines the importance of benthic and pelagic N fixation in the N economies of oligotrophic lakes in arctic Alaska (Chapter 1) and examines nutrient, light, and grazer controls on benthic N fixation (Chapters 2 and 3). Both benthic and pelagic N fixation are prevalent in many lakes across the Alaskan arctic landscape, ranging from 0.12 ? 1.5 mg N m-2 day-1 and 0 ? 2.56 mg N m-2 day-1 respectively. Pelagic N fixation is much higher than has been reported elsewhere for oligotrophic lakes, and is more important than previously thought, comprising ~ 75% of N inputs to one lake. Benthic N fixation is lower than has been reported for other oligotrophic systems, and is roughly equivalent to N inputs from atmospheric deposition on an areal basis (~25 mg N m-2 year-1). On the landscape scale, N fixation in lakes roughly equal that in terrestrial ecosystems in this Arctic region. Benthic N fixation generally appears to have a saturating response to light availability within individual lakes, but light does not explain variation in benthic N fixation across lakes or years. Whole-lake fertilization and laboratory experiments indicate that P input stimulates benthic N fixation while N input suppresses N fixation when N is added either alone or in conjunction with P in Redfield proportion. Snails at ambient density cause a small decline in benthic N fixation (0.85 ? 1.8% reduction over the summer). These patterns are corroborated in the landscape: lakes on younger surfaces have higher P, more snails, and higher rates of N-fixation than lakes on older surfaces.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2006-08-03T12:51:59Z
Publisher
Keywords
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis