eCommons

 

Structure-Reactivity Principles of Alkali Metal Amides: Sodium Diisopropylamide, Lithium Hexamethyldisilazide, and Lithium Diisopropylamide

Other Titles

Abstract

Alkali metal amide structure-reactivity principles of foundational importance to synthetic chemists are described herein with an emphasis on sodium diisopropylamide (Chapters 1–4), lithium hexamethyldisilazide (Chapter 5), and lithium diisopropylamide (Chapter 6). Organosodium reagents are notably underdeveloped contrasting with the highly popular organolithium variants, which pervade the literature in capacities ranging from nucleophiles to strong non-nucleophilic bases. This is due in part to documented inferior solubility and stability of alkylsodiums and sodium amides. Nonetheless, scant reports on the reactivity of sodium diisopropylamide (NaDA)—primarily concerned with preparation and crystallography—suggested some regiochemical and reactivity advantages relative to LDA. NaDA in DMEA is highly soluble, stable, resistant to solvent decomposition, and easily prepared. The application of MCV afforded a uniform assignment of symmetric dimer in all solvents. Solvation of NaDA was addressed using a combination of solubility measurements, solvent exchanges, and DFT computations. NaDA/THF effectively metalates 1,4-dienes and isomerizes alkenes, and the corresponding mechanisms were ascertained, providing a glimpse into sodium coordination chemistry. Highly Z-selective isomerizations were observed for allyl ethers under conditions that compare favorably to those of existing protocols. NaDA/THF readily metalates a variety of arenes, and the mechanisms illuminate the influence of substituents on inductive, mesomeric, steric, and chelate effects. Lithium hexamethyldisilazide (LiHMDS)-mediated enolization of (+)-4-benzyl-3-propionyl-2-oxazolidinone is described in Chapter 5. This enolization shows unusual sensitivity to the choice of hydrocarbon cosolvent (hexane versus toluene) and to isotopic labeling, from which four distinct mechanisms were identified. The kinetics of lithium diisopropylamide (LDA) in tetrahydrofuran under non-equilibrium conditions are reviewed in Chapter 6. Three distinct topics include: (1) methods and strategies used to deconvolute complex reaction pathways, (2) conclusions about organolithium reaction mechanisms, and (3) perspectives on the concept of rate limitation.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2017-08-30

Publisher

Keywords

Organic chemistry

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Collum, David B.

Committee Co-Chair

Committee Member

Fors, Brett P.
Coates, Geoffrey

Degree Discipline

Chemistry and Chemical Biology

Degree Name

Ph. D., Chemistry and Chemical Biology

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record