Supervised Clustering With Structural Svms

Other Titles
Abstract
Supervised clustering is the problem of training clustering methods to produce desirable clusterings. Given sets of items and complete clusterings over these sets, a supervised clustering algorithm learns how to cluster future sets of items in a similar fashion, typically by changing the underlying similarity measure between item pairs. This work presents a general approach for training clustering methods such as correlation clustering and k-means/spectral clustering able to optimize to task-specific performance criteria using structural SVMs. We empirically and theoretically analyze our supervised clustering approach on a variety of datasets and clustering methods. This analysis also leads to general insights about structural SVMs beyond supervised clustering. Specifically, since clustering is a NP-hard task and the corresponding training problem likewise must make use of approximate inference during training of the parameters, we present a detailed theoretical and empirical analysis of the general use of approximations in structural SVM training.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2009-05-22T18:27:39Z
Publisher
Keywords
Structural Svms
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record