eCommons

 

TUNNEL FIELD EFFECT TRANSISTORS: FROM THEORY TO APPLICATIONS

Other Titles

Author(s)

Abstract

The performance of computing systems has been increasingly choked by power consumption and memory access time within and between system components. Meanwhile, the explosion of artificial intelligence requires massive data-heavy computation. Therefore, it is crucial to develop energy efficient computing from devices to architectures. This work is developed along three streams: a steep device with low operation voltage, a novel device enabling complex logic operation, and an efficient modeling algorithm to quickly incorporate emerging devices into circuit designs. On the first front, tunnel field effect transistors (TFETs), which switch by modulating quantum tunneling, promise sub-60 mV/dec subthreshold swing and operate at low power consumption. Based on the unique properties of atomically thin 2D layered materials, two-dimensional heterojunction interlayer tunneling field effect transistor (Thin-TFET) was proposed as a ultra-scaled steep transistor. On the second front, we converted the “undesirable” ambipolar behavior in TFETs into XNOR logic operation, and proposed a one-transistor XNOR design: TransiXNOR. On the third front, we structured artificial neural networks with awareness of device physics, and developed an accurate, efficient, and generic device compact modeling algorithm: physics-inspired neural network (Pi-NN).

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2018-05-30

Publisher

Keywords

Device Modeling; TFET; Tunneling; Electrical engineering; Computer science; neural network; 2D material; Transistor

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Xing, Huili Grace

Committee Co-Chair

Committee Member

Cardie, Claire T.
Jena, Debdeep

Degree Discipline

Electrical and Computer Engineering

Degree Name

Ph. D., Electrical and Computer Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record